
The Framsticks system:
versatile simulator of 3D
agents and their evolution

Maciej Komosiński
Institute of Computing Science, Poznan University of Technology,

Poznan, Poland

Keywords Cybernetics, Simulation, Complexity

Abstract Various aspects of the Framsticks system are described. The system is a universal tool
for modeling, simulating and optimizing virtual agents, with three-dimensional body and
embedded control system. Simulation model is described first. Then features of the system
framework are presented, with typical and potential applications. Specific tools supporting human
understanding of evolutionary processes, control and behaviors are also outlined. Finally, the most
interesting research experiments are summarized.

1. Introduction
Life is one of the most complex phenomena known in our world. Researchers
construct various models of life, which serve diverse purposes, ranging from
entertainment to medicine. One of such models is Framsticks, a system
developed since 1997 (Komosiński and Rotaru-Varga, 2000, 2001; Komosiński
and Ulatowski, 1997). It is different from most other models in that it does not
address a single purpose or a single research problem. On the contrary, it is
built to support a wide range of experiments, and to provide all of its
functionality to users, who may use this open system in a variety of ways.

Another feature which is special for Framsticks is the significance of
understanding, which is central for system development. Although this is a
much simplified model of reality, it is easily capable of producing more
complex phenomena than a human can comprehend (Komosiński, 2000). Thus
it is essential to provide as many automatic analysis/support tools, as it is
possible. Intelligible visualization is one of the most fundamental means for
human understanding of artificial life forms, and this feature is certainly
present in the software.

The system is designed so that it does not introduce restrictions concerning
complexity and size of creatures. Thus neural networks can have any topology

Maciej.Komosinski@cs.put.poznan.pl; www.frams.alife.pl
This work has been supported by the State Committee for Scientific Research, from KBN
research grant no. 8T11F 006 19, and by the Foundation for Polish Science, from subsidy
no. 11/2001.

The Emerald Research Register for this journal is available at The current issue and full text archive of this journal is available at

http://www.emeraldinsight.com/researchregister http://www.emeraldinsight.com/0368-492X.htm

K
32,1/2

156

Kybernetes
Vol. 32 No. 1/2, 2003
pp. 156-173
q MCB UP Limited
0368-492X
DOI 10.1108/03684920310452382



and dimension, allowing for a range of complex behaviors, some described in
Komosiński (2000), section 4. Avoiding limitations is important because
Framsticks is ultimately destined to simulation of open-ended evolution, where
interactions between creatures and environment are the sources of competition,
cooperation, communication, intelligence, etc.

Further sections focus on the following issues: Section 2 – simulation
(morphology, control system, environment); Section 3 – general system
framework (genotype-phenotype relationship and possible usage of the
system); Section 4 – tools that the system provides to support research; Section
5 – sample experiments which have already been performed, as well as some
ideas for the future. Section 6 summarizes this paper.

2. Simulation
Framsticks simulates a three-dimensional world and creatures. All kinds of
interaction between physical objects are considered: static and dynamic
friction, damping, action and reaction forces, energy losses after deformations,
gravitation, and uplift pressure – buoyancy (in a water environment).

There is always a tradeoff between simulation accuracy and simulation
time. We need a fast simulation to perform evolution, on the other hand the
system should be as realistic (detailed) as possible to produce realistic
(complex) behaviors. As we expect emergence of more and more sophisticated
phenomena, the evolution has to be longer and the simulation must be less
accurate, but faster[1]. Thus, in order to make the simulation fast and due to the
computational complexity, some aspects, like collisions between parts of an
organism itself, were discarded.

Artificial creatures in Framsticks are built of body and brain. Body is
composed of material points (called parts ) connected by elastic joints. Brain is
made from neurons (these are signal processing units, receptors and effectors)
and neural connections. For more detailed description of this model refer to
GDK at Ulatowski (2000).

2.1 Body
The basic element is a stick made of two flexibly joined parts (finite element
method is used for step-by-step simulation). Parts and joints have some
fundamental properties, like position, orientation, weight, and friction, but
there may also be other properties, like the ability to assimilate energy,
durability of joints in collisions, etc. Articulations exist between sticks where
they share an endpoint; the articulations are unrestricted in all three degrees of
freedom (bending in two planes plus twisting). Figure 1 shows forces
considered in the simulation.

The Framsticks
system

157



2.2 Brain
Brain (the control system) is made of neurons and their connections. A neuron
may be a signal processing unit, but it may also interact with body as a
receptor or effector. There are some predefined types of neurons.

The standard Framsticks neuron is more general than a popular weighted-
sum sigmoid-transfer-function neuron used in AI: three parameters are used for
each neuron. They influence speed and tendency of changes of the inner neuron
state, and the steepness of the sigmoid transfer function. However, in the
special case, when the three parameters are assigned specific values, the
characteristics of a neuron becomes identical to the popular, reactive AI neuron.
In this case, neural output reflects instantly input signals. More information
and sample neuronal runs can be found in the simulator details section at
Komosiński and Ulatowski (1997).

Another pre-defined neuron is a sinus-generator with frequency controlled
by its inputs. Random noise generator neuron is also available. It is easily
possible to add custom user-designed neurons.

The neural network can have any topology and complexity. Neurons can be
connected with each other in any way (some may be unconnected). Inputs can
be connected to outputs of other neurons (also senses), while outputs can be
connected to inputs of other neurons (also effectors – muscles). A sample
control system is shown in Figure 2.

2.3 Receptors and effectors
Receptors and effectors are interacting between body and brain. They must be
connected to brain in order to be useful, but they must also be a part of the
world. Framsticks have currently three kinds of receptors (senses ): for

Figure 1.
Forces involved in the
simulation

K
32,1/2

158



orientation in space (equilibrium sense, gyroscope), detection of physical
contact (touch), and detection of energy (smell). See also Figure 2.

Effectors (muscles) are placed on stick joints. There are two kinds of
muscles: bending and rotating. Positive and negative changes of muscle control
signal make the sticks move in either direction – it is analogous to the natural
systems of muscles, with flexors and extensors. The strength of a muscle
determines its effective ability of movement and speed (acceleration). If
energetic issues are to be considered, then a stronger muscle consumes more
energy during its work.

A sample Framstick equipped with these elements is shown in Figure 3.

2.4 Environment
The world may be flat, build of smooth slopes, or blocks (see Figure 4). It is
possible to adjust water level, so that not only walking/running/jumping
creatures, but also the swimming ones, emerge. World boundaries may be:

. none (the world is infinite),

. hard (fence: it is impossible to cross the boundary),

. wrap (crossing the boundary means teleportation to another world edge).

Figure 2.
A sample neural

network. Triangles are
signal-processing

neurons. You can see
receptors on the left

(gyroscope, touch,
constant signal) and

controlled muscles on the
right (rotating, bending).

Note recurrent and
parallel connections

The Framsticks
system

159



All these options are useful in various kinds of experiments and performance
measurements.

3. Framework and evolution
3.1 Genetics
There are multiple genetic encodings (“genotype languages”) supported by the
Framsticks system, each with its own representation and operators. The
system manipulates and transforms genotype strings in various
representations, and ultimately decodes them into the internal representation
used by the simulator.

Any creature can be completely described using a low-level representation
f 0, by listing all of its components and attributes. This representation can be
treated as a special genotype encoding – special because it is a direct one-to-
one mapping. Other higher-level encodings convert their representation into the
corresponding f 0 version (possibly through another intermediary
representation). The reverse mapping into higher-level encodings is difficult

Figure 3.
Receptors (equilibrium,
touch, smell) and
effectors (muscles) in
Framsticks

Figure 4.
Flat land, smooth slopes,
and blocks

K
32,1/2

160



to compute, which is also true for biological phenotype encodings. As a
consequence, in the general case, it is not possible to convert a lower-level
representation into a higher-level one (or a higher-level one into another higher-
level one).

Each encoding has its associated genetic operators (mutation, crossover, and
optional repair), and a decoding procedure, which translates a genotype into a
f 0 representation. A new encoding can be added relatively easily, by
implementing these components, without the need to work with internal
representations. The Framsticks system is accompanied by the Genotype
Development Kit (GDK) to simplify this process (Ulatowski, 2000). Later the
most popular encodings are shortly described.

The direct low-level, or f 0, encoding describes agents exactly as they are
represented in the simulator. This encoding is more of a direct representation
than a proper encoding, but it is possible to use it as such. It does not use any
higher-level features to make the genotype more compact or flexible, and
because of this, it is expected that this encoding is not very well suited for
evolution. Its useful characteristics are that it has a minimal decoding cost and
that it is universal: every possible agent can be described using this encoding.
These properties make it possible to use the f 0 encoding as an intermediary
representation during the translation from other higher-level encodings.

The direct low-level (f 0) genotype consists of a list of descriptions of all the
objects the agent is composed of: parts, joints, neurons, and connections. Every
description specifies all the attributes of the object explicitly. Generally, this
encoding does not impose any restriction on the phenotypes, and it even allows
morphologies with cycles.

The recurrent direct encoding (f1) describes all the parts of the
corresponding phenotype. Small changes in the genotype cause small
changes in the resulting creature. Body properties are represented locally,
but propagate through a creature’s structure (with decreasing power). That
means that most of the properties (and neural network connections) are
maintained when a part of a genotype is moved to another place. Control
elements (neurons, receptors) are associated with the elements under their
control (muscles, sticks). Only treelike structures can be represented (no cycles
allowed). This encoding is relatively easy for humans to manipulate and design
creatures manually by editing their genotypes.

The developmental encoding (f4) is development-oriented, similar to
encoding applied for evolving neural networks (Gruau et al., 1996). An
interesting merit of developmental encoding is that it can incorporate symmetry
and modularity, features commonly found in natural systems, yet difficult to
formalize. f4 is similar to f1, but codes are interpreted as commands by cells
(sticks, neurons, etc.). Cells can change their parameters, and divide. Each cell
maintains its own pointer to the current command in the genetic code. After
division, cells can execute different codes, and thus differentiate themselves.

The Framsticks
system

161



The final body (phenotype) is the result of a development process: it starts with
an undifferentiated ancestor cell, and ends with a collection of interconnected
differentiated cells (sticks, neurons and connections).

Each of these encodings has its own genetic operators (mutation and
crossover). Each of them has been carefully designed and tested, and each
encoding was based on numerous theoretical considerations. More detailed
description can be found in Komosiński and Rotaru-Varga (2001). Examples of
simple genotypes and corresponding phenotypes are shown in Figure 5.

3.2 General framework
The most important feature of Framsticks is that you may define your own
rules for the simulator. There are no predetermined laws, but a script –
experiment definition. A script is a set of instructions in some language, which
is interpreted by some program and executed.

This script defines behavior of the Framsticks system in a few associated
areas.

. Creation of objects in the world. The script defines where, when and how
much of what objects will be created. An object is an evolved organism,
food particle, or any other element of the world designed by a researcher.
Thus, depending on some specific script, food or obstacles might appear,
move and disappear, their location might depend on where creatures are,
etc.

. Objects interactions. Object collision/contact is an event, which may
cause some action defined by the script author. For example, contact may
mean energy ingestion, pushing each other, destruction, or reproduction.

. Evolution. A steady-state (one-at-a-time) selection model, where a single
genotype is inserted into a gene pool at a time, can be used. But a standard
(i.e. generational replacement) evolutionary algorithm approach is also
possible (a new gene pool replaces the whole old gene pool). Another
possibility is tournament competition for all pairs of genotypes. In
general, the script can define many gene pools and many populations, and
perform independent evolutions under different conditions.

Figure 5.
Left: example of f 1
genotype
XXX(XX,X(X,X)).
Right: example of f4
genotype with repetition
gene: rr , X . #5 , ,
, X . RR ! llX .
LX . LX @ X

K
32,1/2

162



. Evaluation criteria are flexible, and do not have to be as simple as the
performances supplied by the simulator (but they will have to be based
somehow on performances). For example, fitness might depend on time or
energy required to fulfill some task, or degree of success (distance from
target etc.).

The script is built of “procedures” assigned to system events. These include the
following events.

. onExpDefLoad – occurs after experiment definition was loaded. This
procedure should prepare the environment, create gene pools and
populations.

. onExpInit – occurs at the beginning of the experiment.

. onExpSave – occurs on save experiment request.

. onExpLoad – occurs on load experiment request. After this event,
system state should resemble the state before onExpSave.

. onStep – occurs in each simulation step.

. onBorn – occurs when a new organism is created in the world

. onKill – occurs when a creature is removed from the world

. on[X]Collision – occurs when an object of group [X] has touched
some other object.

Thus a researcher may define the behavior of the whole system by
implementing appropriate actions within these events. A single script
(experiment definition) may use parameters, so it usually allows to perform a
whole bunch (class) of diversified experiments.

3.3 Illustrative example (standard experiment definition)
The file “standard.expdef” contains the full source for the script used to
optimize creatures on a steady-state basis, with fitness defined as a weighted
sum of their performances (see also Figure 6). This script is quite versatile and
complex. Below its general idea is explained, with much simplified actions
assigned to system events:
:onExpDefLoad

. create single gene pool “Genotypes”,

. create two populations “Creatures” and “Food”

:onExpInit

. empty all gene pools and populations

. place the beginning genotype in “Genotypes”

The Framsticks
system

163



:onStep

. if too little food: create new object in “Food”

. if too few organisms: select a parent from “Genotypes”; mutate, crossover,
or copy it. From the resulting genotype create an individual in “Creatures”

:onBorn

. move new object into a randomly chosen place in the world

. set starting energy according to object’s type

:onKill

. if “Creatures” object died, save its performance in “Genotypes” (possibly
creating a new genotype). If there are too many genotypes in “Genotypes”,
remove one.

:onFoodCollision

. send energy portion from “Food” object to “Creature” object.

4. Additional tools
Many research works concern studies of evolutionary processes, their
dynamics and efficiency. Various measures and methods have been developed
in order to be able to analyze evolution, complexity, and interaction in the
observed systems. Other works try to understand behaviors of artificial
creatures, regarding them as subjects of survey rather than black boxes with
assigned fitness and performance.

Artificial life systems, especially those applied to evolutionary robotics and
design (Bentley, 1999; Funes and Pollack, 1998; Lipson and Pollack, 2000), are
quite complex and it is difficult to understand the behavior of existing agents in

Figure 6.
A fragment of software
window with experiment
parameters

K
32,1/2

164



detail. The only way is to observe them carefully and use human intelligence to
draw conclusions. Usually, the behavior of such agents is non-deterministic,
and their control systems are sophisticated, often coupled with morphology
and very strongly connected functionally (Lund et al., 1997).

Thus for the purpose of studying behaviors and populations of individuals,
one needs high-level, intelligent support tools (Komosiński and Rotaru-Varga,
2000). It is not likely that automatic tools will soon be able to produce
understandable, non-trivial explanations of sophisticated artificial agents.
Nonetheless, their role and help cannot be ignored. Even simple automatic
support is of great relevance to a human, which becomes obvious after
spending hours on investigating relatively simple artificial creatures. It may
be that in the future some advanced analysis methods, developed within
artificial life methodology, will be useful for real life studies, biology and
medicine.

One of the main purposes of the Framsticks system is to allow creating and
testing such tools and procedures, and to develop methodology needed for
their use. Realistic artificial life environments are the right place for such
research.

4.1 Clustering of similar individuals
Similarity seems to be a simple property. However, automatic measures of
similarity can help in observation of regularities, groups of related individuals,
etc. Similarity can be identified in many ways, including aspects of morphology
(body), brain, size, function, behavior, performance, fitness, etc. Whatever
definition is used, automatic measure of similarity can be useful for:

. optimization to introduce artificial niches by modification of fitness
values (Goldberg, 1989),

. studies of evolutionary processes and the structure of populations of
individuals,

. studies of function/behavior of agents,

. reduction of the number of agents to a small subset of interesting, diverse,
unique individuals,

. inferring dendrograms (and hopefully, phylogenetic trees) based on
distances between organisms.

For Framsticks, we constructed a heuristic method that is able to estimate the
degree of similarity of the two individuals. This method treats body as a graph
(with material points as vertices and joints as edges), and then tries to match
two body structures based on the degrees of vertices as the main piece of
information. For a more detailed description of this method see Komosiński
et al. (2001), and an example is presented in Section 5.

The Framsticks
system

165



4.2 History of evolution
In real life, although we are able to trace genetic relationships within existing
creatures, we do not know what happens during mutation and crossing over of
their genomes. Moreover, we cannot trace genetic relations in a longer scale and
higher number of individuals.

In Framsticks, it is possible not only to remember all parent-child
relationships, but also to estimate genetic shares of related individuals (how
many genes have mutated, or have been exchanged). This allows to draw a real
tree of evolution, as shown in Figure 7. Vertical axis is time, horizontal one
reflects local degree of genetic dissimilarity (between a pair of individuals).
Vertices in the tree are single individuals.

4.3 Fuzzy control
Fuzzy control, nowadays, has become a very popular method of controlling in
many domains of our life: washing machines, video cameras, ABS, air-
condition, etc. It is also used for controlling non-linear, fast-changing processes,
where quick decisions are more important than exact ones (Yager and Filev,
1994). Fuzzy control

Figure 7.
The real tree of
evolution. Top: single
ancestor and beginning
of time. Black lines
represent mutations,
white ones are
crossovers

K
32,1/2

166



. allows for linguistic variables. “Drive fast” is much more flexible than
“drive with speed 80-100 km/h”. In fuzzy approach we would say: 79 km/h
is still fast with degree 95 percent

. better comprehension for humans – fuzzy rule: if X is Big and Y is Small
then Z is Medium is easier to understand than crispy one: if X is between
32.22 and 43.32 and Y is less than 5.2 then Z is 19.2

. more fluent, “natural” change of system states – for example, gradual
slowing down of a car.

For such reasons, fuzzy control is developed in Framsticks. Therefore, evolved
Framsticks’ brains may be more understandable for a human. Fuzzy control,
similarly to neural networks, can also cope with uncertainty of information –
when the process is compound, depends on lottery events or the measurement
is burden with error. Fuzzy approach can manage this inconvenience by
generalization of information. To incorporate this approach in Framsticks
neural network model, three additional types of neurons are needed:

. difference neuron – to compare current value of the sensor to the previous
one,

. rule neuron – to represent a fuzzy rule,

. aggregate neuron – to gather answers of the rule neurons and calculate
crisp output.

The two sample fuzzy rules are:

IF gyroscope is big+ AND Dgyroscope is small+

THEN bend muscle medium 2

IF gyroscope is medium 2 AND Dgyroscope is zero+

THEN bend muscle big+

where gyroscope is the measurement taken from the gyroscope receptor,
Dgyroscope is the change in its value, and linguistic terms “big+” etc.
correspond to fuzzy intervals of values. The representation of these two rules in
the Framsticks neural network is shown in Figure 8.

4.4 Helper software
Together with continuous development of extensions to the Framsticks system
itself, there are some external tools created. Fred is a visual Framsticks Editor
developed in JAVA, which allows to design a creature (or a structure) in a user-
friendly way. Framsticks Experimentation Center is an Internet database of
genotypes and experiment definitions/proposals, which can be browsed,
downloaded and uploaded.

The Framsticks
system

167



5. Research experiments
5.1 Comparison of genotype encodings
There are a number of studies of the evolution of simulated creatures equipped
with realistic physical behavior. In such systems, the use of a physical
simulation layer implements a complex genotype-fitness relationship.
Physical interactions between body parts, the coupling between control and
physical body, and interactions during body development can all add a level of
indirection between the genotype and fitness. The complexity of the genotype-
fitness relationship offers a potential for rich evolutionary dynamics.

The most important element of the genotype-to-fitness relationship is the
genotype-to-phenotype mapping, or genotype encoding. There is no obvious
simple way to encode a complex phenotype – which consists of a variable-size,
structured body and a matching control system – into a simpler genotype.
Moreover, an evolutionary algorithm can perform poorly when using a certain
genotype encoding, and better when using others, for reasons not yet
immediately obvious. The employed genotype encoding can have a significant
effect on the performance of the evolution.

The Framsticks system has been used as the context of analysis of various
genotype encodings. The performance of the three encodings described in
Section 3 was compared in their optimization tasks: passive and active height,
and velocity maximization (Komosiński and Rotaru-Varga, 2001). The
solutions produced by evolution are considered to be successful for the given
tasks in all three cases. However, there were some important differences in the
degree of success. The f 0 encoding performed worse than the two higher-level

Figure 8.
Two fuzzy rules encoded
as a Framsticks neural
network

K
32,1/2

168



encodings. The most important differences between these encodings are that
f 0 has a minimal bias and is unrestrictive, while the higher-level encodings (f1
and f4) restrict the search space, and introduce a strong bias towards
structured phenotypes. Based on these results, we conclude that a more
structured genotype encoding, with genetic operators working on a higher
level, is beneficial in the evolution of 3D agents. The presence of a bias towards
structured phenotypes can overcome the apparent limitation that entire regions
of the search space are not accessible by the search. This bias may be useful in
some applications (engineering and robotics, for example). The significant
influence of a chosen encoding can be clearly seen in the obtained agents: those
with f 0 encoding displayed neither order nor structure. The two encodings
restricting morphology to a tree produced more clear constructions, and for
developmental encoding segmentation and modularity could be observed
(Figure 9).

Figure 9.
Representative agents

for various genetic
encodings and height

maximization task

The Framsticks
system

169



5.2 Automatic optimization versus human design
Designing agents by hand is a very complex process, in professional
applications it requires planning and extensive knowledge about how the
control system, receptors, and effectors work, as well as knowledge about the
simulator. Designing neural networks for control by hand is especially difficult
and tedious. For this reason, human-built agents usually have lower fitness
than agents produced by evolution. However, human creations are often
interesting qualitatively. Human designs have such properties as explicit
purpose, elegance, simplicity (minimum of means), and often symmetry and
modularity. These features are opposed to evolutionary results, which are
characterized by hidden purpose, complexity, implicit and very strong
interdependencies between parts, as well as redundancy and randomness
(Komosiński and Rotaru-Varga, 2001).

The difficult process of designing neural networks can be circumvented by a
hybrid solution: bodies can be hand-constructed, and control structures evolved
for it. This approach can yield interesting creatures (Adamatzky, 2000;
Komosiński, 2000; Komosiński and Rotaru-Varga, 2000; Komosiński and
Ulatowski, 1997), often resembling in behavior creatures found in nature
(Ijspeert, 2000).

5.3 Clustering with similarity measure
The similarity measure outlined in Section 4 allowed us to perform various
experiments (Komosiński et al., 2001). Figure 10 shows the results of application
of UPGMA clustering method to ten individuals from the height maximization
task. The figure shows their morphologies together with the clustering tree.

It can be seen that the three big organisms are in a single, distinct cluster.
They are similar in size, but different in structure, so the distance in-between
them is high. Moreover, the measure captured also functional similarity (hp_1,
3, 6, 9, 7) – all these agents have a single stick upwards and a similar base. The
agents hp_0 and hp_4 are of medium size, but certainly closer to the small
organisms group than to the big ones. They are also similar in structure; that is
why they constitute a separate cluster.

The similarity measure is very helpful for study and analysis of groups of
individuals. Manual work of classification of the agents shown on Figure 9
yielded similar results, but it was a very mundane and time-consuming
process. It also lacked objectivism and accuracy, which are properties of the
automatic procedure.

5.4 Other possibilities
Considering open architecture of the Framsticks system, many possibilities
exist of defining diverse genetic representations, experimental setups,
interaction rules, and environments (see Section 3). Most obvious ideas

K
32,1/2

170



include coevolution of individuals in a population, predator/prey relationships,
multiple gene pools and populations, and their specialization.

Some of the possible experiments related to biology include introducing
geographical constraints, and then looking at the differences in clusters
obtained after a given period of time, or studying two or more populations of
much differing sizes. The latter, under geographical constraints, could be used
to simulate and understand speciation.

Refer Mandik (2002a, b) for a number of interesting experiments regarding
evolutionary and neuro-computational bases of the emergence of complex
forms of cognition, and a discussion about semantics of evolved neural
networks, perception, and memory.

Figure 10.
The clustering tree for

ten best individuals from
the height maximization

task

The Framsticks
system

171



6. Summary
This paper was devoted to Framsticks, a general tool for modeling, simulation,
and optimization of virtual creatures. Although the system is versatile and
complex, one should remember that it may be simplified when some features
are not needed. For example, control systems can be neglected if only static
structures are to be considered. Genetic encoding may only allow for two-
dimensional structures if 3D is not required. Local optimization framework
may be used if the task does not require evolutionary algorithms, etc.

Complexity is useless when it cannot be understood or used. This is why
Framsticks software tries to present information in a human-friendly and clear
way. It is not only employed in research experiments, but is also popular in
education. The system is used by computer scientists, biologists, roboticists,
and other scientists, but also by students and laypeople of various age.

Note

1. However, there are plans to integrate a very accurate simulation engine into the system
when it is required; such engines are used in some works (Taylor and Massey, 2001).

References

Adamatzky, A. (2000), “Software review: Framsticks”, Kybernetes: The International Journal of
Systems and Cybernetics, Vol. 29 No. 9-10, pp. 1344-51.

Bentley, P. (1999), Evolutionary Design by Computers, Morgan Kaufmann.

Funes, P. and Pollack, J.B. (1998), “Evolutionary body building: adaptive physical designs for
robots”, Artificial Life, Vol. 4 No. 4, Autumn, pp. 337-57.

Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley, Reading, MA, USA.

Gruau, F., Whitley, D. and Pyeatt, L. (1996), “A comparison between cellular encoding and direct
encoding for genetic neural networks”, in Koza, J.R., Goldberg, D.E., Fogel, D.B. and Riolo,
R.R. (Eds), Proceedings of the First Annual Conference, Genetic Programming 1996 MIT
Press, Cambridge, MA, pp. 81-9.

Ijspeert, A.J. (2000), “A 3-D biomechanical model of the salamander”, in Heudin, J.-C. (Ed.),
Proceedings of 2nd International Conference on Virtual Worlds (VW2000), LNAI 1834,
July 2000, Springer-Verlag, Paris, France, pp. 225-34.

Komosiński, M. (2000), “The world of Framsticks: simulation, evolution, interaction”, in Heudin,
J.-C. (Ed.), Virtual Worlds. Lecture Notes in Artificial Intelligence 1834, Springer-Verlag,
pp. 214-24.

Komosiński, M. and Rotaru-Varga, A. (2000), “From directed to open-ended evolution in
a complex simulation model”, in Bedau, M.A., McCaskill, J.S., Packard, N.H. and
Rasmussen, S. (Eds), Artificial Life VII, MIT Press, pp. 293-9.

Komosiński, M. and Rotaru-Varga, A. (2001), “Comparison of different genotype encodings for
simulated 3D agents”, Artificial Life Journal, Vol. 7 No. 4 Fall, pp. 395-418.

Komosiński, M. and Ulatowski, S. (1997), Framsticks Web Site, http://www.frams.alife.pl

Komosiń, ski, M., Koczyk, G. and Kubiak, M. (2001), “On estimating similarity of artificial and
real organisms”, Theory in Biosciences, Vol. 120, pp. 271-86.

K
32,1/2

172



Lipson, H. and Pollack, J.B. (2000), “Automatic design and manufacture of robotic lifeforms”,
Nature, Vol. 406 No. 6799, pp. 974-8.

Lund, H.H., Hallam, J. and Lee, W.-P. (1997), “Evolving robot morphology”, Proceedings of IEEE
4th International Conference on Evolutionary Computation, (Invited paper) IEEE Press, NJ.

Mandik, P. (2002a), “Synthetic neuroethology”, Metaphilosophy, Vol. 33 No. 1/2, pp. 11-29, http://
www.wpunj.edu/cohss/philosophy/faculty/mandik/papers/synthneur.pdf

Mandik, P. (2002b), “Varieties of representation in evolved and embodied neural networks”,
William Paterson University Cognitive Science Technical Report 2002-03. http://www.
wpunj.edu/cohss/philosophy/faculty/mandik/papers/vreenn.pdf

Taylor, T. and Massey, C. (2001), “Recent developments in the evolution of morphologies and
controllers for physically simulated creatures”, Artificial Life, Vol. 7 No. 1, Winter,
pp. 77-88.

Ulatowski, S. (2000), Framsticks GDK (Genotype Development Kit), http://www.frams.alife.
pl/dev

Yager, R.R. and Filev, D.P. (1994), Foundations of Fuzzy Control, Wiley, New York.

The Framsticks
system

173


